Sparse Gaussian ICA
نویسندگان
چکیده
Independent component analysis (ICA) is a cornerstone of modern data analysis. Its goal is to recover a latent random vector S with independent components from samples of X = AS where A is an unknown mixing matrix. Critically, all existing methods for ICA rely on and exploit strongly the assumption that S is not Gaussian as otherwise A becomes unidentifiable. In this paper, we show that in fact one can handle the case of Gaussian components by imposing structure on the matrix A. Specifically, we assume that A is sparse and generic in the sense that it is generated from a sparse BernoulliGaussian ensemble. Under this condition, we give an efficient algorithm to recover the columns of A given only the covariance matrix of X as input even when S has several Gaussian components.
منابع مشابه
Speech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملModes or models: a critique on independent component analysis for fMRI.
are only uncorrelated). More importantly , ICA does this in a fashion that renders the expression of the components non-Gaussian. In the implementation proposed by McKeown et al. these distributions are super-Gaussian or 'sparse'. This simply means that things happen infrequently. Why is a 'sparse', or more generally a non-Gaussian, distribution interesting? The answer to this question is simpl...
متن کاملSemi-Blind Approaches for Source Separation and Independent component Analysis
This paper is a survey of semi-blind source separation approaches. Since Gaussian iid signals are not separable, simplest priors suggest to assume non Gaussian iid signals, or Gaussian non iid signals. Other priors can also been used, for instance discrete or bounded sources, positivity, etc. Although providing a generic framework for semi-blind source separation, Sparse Component Analysis and ...
متن کاملAn algorithm for separation of mixed sparse and Gaussian sources
Independent component analysis (ICA) is a ubiquitous method for decomposing complex signal mixtures into a small set of statistically independent source signals. However, in cases in which the signal mixture consists of both nongaussian and Gaussian sources, the Gaussian sources will not be recoverable by ICA and will pollute estimates of the nongaussian sources. Therefore, it is desirable to h...
متن کاملSparse Code Shrinkage Based on the Normal Inverse Gaussian Density Model
In this paper we introduce the recent normal inverse Gaussian (NIG) probability density as a new model for sparsely coded data. The NIG density is a flexible, four-parameter density, which is highly suitable for modeling unimodal super-Gaussian data. We demonstrate that the NIG density provides a very good fit to the sparsely coded data, obtained here via an independent component analysis (ICA)...
متن کامل